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A stepwise logistic regression model was used to
predict the one year survival of patients
admitted to a medical intensive care unit.
methods of validation were used to test for
stability, overtraining, and the effects of
additional variables: cross validation using
separate training and validation sets and the
jackknife technique. The effect of correlation
between variables and relative frequencies in the
jackknife subgroups on the model is discussed.
The use of various cut-off values to change the
sensitivity and specificity of the model is
examined.
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INTRODUCTION

A number of statistical techniques have been
utilized in analyses from clinical databanks to
provide diagnostic or clinical predictions. Such
studies done by the Laboratory of Computer Science
of the Department of Medicine at the Massachusetts
General Hospital have included several methods,

among them sequential Bayes(l), Bahadur's

technique(z), multiple regression, discriminant
analysis and logistic regression. This paper
discusses our experience in using the logistic
regression model for prediction of survival at one
year following discharge, for a specific cohort of
patients admitted to an intensive care unit.

METHODS

Logistic Model: The objective of logistic
regression is to produce a formula for predicting
the probability of success for a given outcome for
each patient in a study. One could predict this
probability to be simply the rate of the outcome
in the study group. Logistic regression attempts
to improve on this prior probability by adjusting
the predicted probability for a given patient
according to specific covariate values. (e.g.,
sex = male, age = 49, CPK = 50).

Letting X denote the vector of covariates and B
the associated coefficients, the logistic model

relates the individual's probability p to his or
her covariate values as follows:

Log ( iE; ) = BXo t B1x1 . . . +B X, 1]

-5’1

0193~46210/80/0000-0222$00.75 © 1980 IEEE

222

02114
Bois the intercept coefficient and X, is

identically equal to 1 for all records.
Inverting this equation one obtains
(2]

p=exp (FX) / (l+texp (8 X))

The probability of the data or the likelihood
function of the vector B, L(B), is essentially

a binomial likelihood function, with the
probability of success for each record modified by
its covariate values. Let the sample contain n

persons. Then precisely
n Yi l-yi
L@ =1 p k) (1-p&xy) ) [3]
i=1

Substituting equation [2] into L(B) where pcxi)
corresponds to p for record i with covariates

x=x,; we obtain

n exp ( (8 %) yp)
L(B) =T ” [4]
i=1 1+ exp (B%y)

The estimates of B are then obtained by maximizing
equation [4] as a function of B using the Newton-

Raphson method(3). The resulting estimates B are
the maximum likelihood estimates.

The coefficients generated by the logistic
regression can be applied to a population
resulting in a logit value for each person in the
population. Since the range of this logit value
is from 0 to 1, the logistic regreéssion is
easily applied to a problem with a dichotomous
outcome.

The logistic regression used in this analysis is
written in MUMPS to run on a PDP-15. Variables
are added to the model using a stepwise procedure
with variable selection based on the gain obtained
by computing the increase in log-likelihood
attributed to the variable. The level of
significance for the gain is measured by the

likelihood ratio test(a). The maximum number of
variables allowed in a single regression run is
99, although response time makes such a run
impractical. A significant improvement in
response time can be achieved by using dichotomous

variables.



Clinical Database: Data has been collected on all
patients admitted to an 18-bed intensive care unit

(ICU) at the Massachusetts General Hospital(5’6).
Data collection began on July 18, 1977 and to date
over 4,000 records have been entered into the data-
base, with more than 400 data items entered into
each record. Included in the data are demographic
information, medical history, physical findings

and follow-up information.

In addition, extensive clinical data were
collected on all cardiac patients admitted to the
ICU for one year beginning January 29, 1978. A
subset of patients from this one-year group was
identified as having been admitted to the unit
with a diagnosis of either acute myocardial
infarction, suspected myocardial infarction,
coronary insufficiency or unstable angina. Of
these patients 563 were discharged alive from the
hospital and were followed-up within one year.
From this group, 417 patients with chest pain on
admission were selected for further consideration.
A final subset of 397 patients was derived by
eliminating those patients without values for CPK,
LDH, or SGOT and those who were not given an EKG
on admission. - This final subset became our study
group for examination of the use of stepwise
logistic regression to build a model for
prediction of survival. Of the 397 patients, 46
were deceased at follow-up; 351 were still alive.

Variable Selection: Preprocessing of the data
was necessary to reduce the variables to a
workable number. A chi-square test was used on
all categorical variables and a t-test was used on
all continuous variables to determine the best
candidates for predicting survival. All variables
were then converted to dichotomous variables.
Cut-off points used to convert some continuous
variables into dichotomous variables were
determined using maximum Kolmogorov-Smirnov

&)

test . Other continuous variables, such as CPK,
were split into several variables, each having

a range. (E.g., CPK<50, CPK>50 and <100,

CPK >100 and <250, CPK >250.) At the end of this
process, there remained 296 dichotomous variables
eligible for use in the model.

These 296 variables were grouped into systems such
as medical history, physical exam, etc., each of
which contained from 18 to 24 variables.

The grouping by systems was used in the final
analysis to enhance recognition of variables which
were highly correlated. Logistic regression was
run on each system to determine the best variables
for the final analysis.

Validation of the Model: Two approaches were

used to validate the model. The first approach
involved dividing the total set of patients into
two subsets, a training set on which the model was
built and a validation set to test the accuracy of
the model. The second approach involved dividing
the total set into subsets and using the jackknife

(8,9 to check the stability of the

technique
model.
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The performance of the stepwise logistic
regression model was measured by comparing the
probability of death predicted by the model
against the actual outcome. To do this the
predicted probabilities were converted to a
dichotomous form and the subsequent comparison
made via a 2 x 2 table. For example, if the
cut-off value is 0.2, any patient with a predicted
probability greater than 0.2 was considered to
have a positive outcome; any patient with a
predicted probability less than or equal to 0.2
was considered to have a negative outcome. Given
a specific cut-off value, a 2 x 2 table (see
Table 1) was generated and by sweeping through
several cut-offs between 0 and 1, a series of
tables was generated. (The predictive probabili-
ties generated using the logistic model fall in
the range of 0 to 1.)

TABLE 1
2X2 TABLE
OUTCOME
+ -
TEST + a c atc
TEST - b d b+d
a+b ct+d

Taking the proportion of true positives (a/a+b)
and the proportion of false positives (c/c+d)
derived at several cut-off values, an R.0O.C.

curve(lo’ll) was generated. Comparison of R.O.C.
curves generated by a given model on the training
and validation sets provides a measure of model
performance. (See Figure 1)

The clinician may select the utilities best suited
fox his or her own application. A low cut-off
value yields a high true positive but also a high
false positive rate, while a high cut-off value
yields a low true positive and low false positive
rate. Once the clinician determines suitable
values for true positive ratio and false positive
ratio, an appropriate cut-off value for the model
can be determined. The model's performance at that
cut-off is shown by the R.0.C. curve generated by
the model.

Additional Variables: The logistic regression
employed was a stepwise procedure which added a
new variable whenever a significant gain resulted.
Changes in sensitivity and specificity provided a
measure of the usefulness of adding variables to
the model. Holding the specificity constant, the
sensitivity of the model was recorded after each
variable was added. Likewise, the specificity of
each model at a constant sensitivity was recorded.
The point at which the sensitivity and/or
specificity decreased demonstrated when additional
variables showed little new information. Careful
attention was paid to the significance of the
increases in sensitivity and specificity. The
effect of additional variables was examined in the
model generated by the training set on both the




TRUE POSITIVE

training set and validation set populations and
also in the model generated by the total set using

the total population.

Jackknife Technique:

FIGURE 1
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greater than 0.82 (gain = 0.82 corresponds to a p
< 0.20 significance level as determined by the
likelihood ratio test(4)). The total set model
and the training set model were created using
these 24 variables. However, to reduce the amount
of execution time, the jackknife models were
created using only those variables with a gain
greater than 0.82 in the model generated by the

total set.
To establish the training and

Cross Validation:
validation sets for the cross validation

procedure, each of the 397 patients in the total
data set used was randomly assigned to either the
training set or the validation set. The result
was a training set of 204 patients, 24 of whom
were deceased at the time of follow-up, and a
validation set of 193 patients, 22 of whom died
within one year. The stepwise logistic regression
was run and a model generated using 5 variables,
each gaving a gain greater than 1.92. (A gain of

1.92 corresponds to a significance level of
P < .05 as determined by the likelihood ratio test).

The stepwise logistic regression generated a
model finely tuned to the relative frequencies of
The R.0.C.

the covariates in the training set.
curve demonstrated the more conservative

performance of the validation set when compared
When this overtraining

with the training set.
occurred the performance of the validation set was

used as a conservative measure of the model's

performance.
Figure 2 demonstrates the

Additional Variables:
contribution additional values made to the model,

-7 with respect to sensitivity.
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The jackknife procedure

FIGURE 2
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developed by Quenoille(s) and extended by

Tukey(g) requires dividing the total set into
several subsets, each having approximately equal
numbers of patients and approximately equal prior
odds. The jackknife population groups were formed
by taking the total set of patients minus one of
the subsets defined above. One model using the

total set and one model for each of the jackknife
The jackknife models and

groups were generated.
the total set model were compared using the
information content as described by Shannon(lz).

The information content was measured at a cut-off
point common to all the models; then Tukey's

jackknife formula(13) was used to compute a best
estimate for the total model.
RESULTS
The logistic regression runs

Variable Selection:
made to determine the variables used for the final
model yielded 24 variables which had a gain of

.
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The graph shows the highest sensitivity achieved
if the specificity was greater than .9 for the
seven models (one for each variable added to the
model) generated for each of the three
populations: the training set, validation set and
a total set made up of all 397 patients. After
the fifth variable had been added, the models
applied to the training set showed no increase in
sensitivity (the gain achieved by adding the
seventh variable was insignificant, hence the rise
in sensitivity at the seventh variable was
attributed to noise). The models applied to the
validation set showed a leveling at the third
variable and a decrease when the fifth variable
was added. Figure 3 is a graph of the specificity
given a sensitivity of .8 or greater for the seven
models for each population.

FIGURE 3
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The models applied to the training set
demonstrated no new increase in specificity after
the fifth variable (again, the seventh variable
introduced noise), while the graph of the
validation set showed no change in specificity
after the fourth variable. The graphs of
sensitivity and specificity for the models
generated using all 397 patients had results
similar to the training set models.
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The addition of a sixth variable gave no new
information to the model generated by the training
set. The decision of how many variables are to be
included in the model depends upon the outcome to
which the model is applied. The user must decide
within which range of sensitivity and/or
specificity he/she wishes to operate, and make the
appropriate model choice. A lower acceptance
criterion for specificity or sensitivity may allow
more variables to be added.

Jackknife Technique: For the jackknife, the 397
patients in the total set were divided into six
subsets, each having approximately 66 patients and
each having approximately equal prior odds of
death within one year. Six different jackknife
groups were formed by combining a unique group of
five of the six subsets defined above. Thus, each
jackknife group contained 5/6 of the total set
(331 + 1). The mortality rate in these groups
was 11.6 * 0:15%. A model was generated using
the total population and 24 variables in a
stepwise logistic regression. Allowing this model
to expand as long as added variables produced gains
greater than .23 (gain of .23 corresponds to

P <.5) resulted in a ten-variable model. These
ten variables were then used for the jackknife
analysis.

A total of seven models was generated for the
jackknife procedure: six models, each one using
one of the jackknife groups as a population, and
one model using the total set of 397 patients.
Applying the six jackknife models to their

respective populations, the information concent(lz)
for each model was generated using a cut-off point
equal to the prior odds of death in one year
(.116). The same measurement was done on the total
set using the model generated by the total set,
resulting in an information content of .1147.
Applying the information content of Tukey's jack-

knife formula{13), a best estimate of .1054 with a
95% confidence interval of -.0187 to .2294 was

achieved. A sequential Bayes model(l) applied to
the same data set resulted in a lower best
estimate for information content but a narrower
95% confidence interval.

The six models generated by applying the

stepwise logistic regression to the six jackknife
population groups differed with respect to the
number of variables selected, the identity of the
variables selected and the order of their
selection (Table II). This variability resulted
from changes in the relative frequencies of the
variables within each jackknife group and the
correlation of variables with one another.



TABLE IT
ORDER OF VARIABLE SELECTION
TOTAL
JACKKNIFE GROUP SET
VARIABLE 1 2 3 4 5 6
1 - - 1 - - 1 1
2 5 2 2 - 2 2 2
3 2 1 - 2 1 3 3
4 4 3 3 - 5 5 4
5 3 5 5 3 4 4 5
6 1 4 - 1 6 6 6
7 6 - 4 - 71 - 7
8 - - - - 3 - -
9 - - 6 - 8 - -
10 - - - - - - -

- denotes not selected for model

The information content of ,variable 6, for
example, was .0367, in jackknife group 2 and .0744
in jackknife group 4. Similarly, the sensitivity
of variable 6 changed from .6154 to .7105 in the
respective jackknife groups and the specificity
changed from .7235 to .7705. This variation in
information content, sensitivity and specificity
occurred in all variables throughout all jackknife
groups.

The effect of variable correlation became more
complex as more variables were added to a given
model. The first variable chosen for a model was
selected on its ability to discriminate between
the positive outcome (death at follow-up) and the
negative outcome (survival at follow-up). When
the stepwise logistic regression evaluated the
remaining variables for possible selection as the
second variable in the madel, the correlation
between the variable already chosen and the
potential variable was taken into account by the
logistic regression algorithm.

If two variables were strongly correlated with

one another and one of the variables was also
chosen by the regression for the model, the second
variable would be an unlikely candidate for
addition to the model. The first variable
selected would account for the power of the second,
hence little new information could be gained by
adding the second variable. For example, at the
first step of the regression for the model
generated using the jackknife group 1, variable 6
(history of congestive heart failure) was ranked
first with a gain of 13.51, while variable 1
(pulmonary edema at admission) with a gain of 11.14
was ranked second and variable 3 (wet rales (not
basilar)) was ranked third with a gain of 8.34.
Variable 6 was selected as the first variable in
the model and the remaining nine variables were
tested with the new one-variable model for
selection of a second variable.

In the second step, variable 3 was ranked first
(gain = 5.26) with variable 1 ranked second
(gain = 4.67). The shift in rank of variables 1

and 3 resulted from the correlation of variables 6
and 1. (Of the 35 patients in jackknife group 1
with variable 1 positive, 27 (77%) patients also
had variable 6 positive, while 12 of the 19 (63%)
patients with variable 3 positive also had
variable 6 positive). While both variables 1 and
3 were correlated with variable 6, variable 1 was
affected more by the correlation between
variables.

Once two variables have been selected for the
model, the correlation problem becomes more
complicated. The logistic regression had to take
into account the correlation between the candidate
variables and the variables already chosen. 1In
the example cited above, variable 1 had a gain of
2.01 on the third step of the regression and was
ranked fifth out of the eight remaining variables.
As the model generation progressed, variable 1 was
never chosen.

DISCUSSION

Statistical models for clinical prediction must be
judged primarily on their ability to accurately
predict outcomes for new patients. The ability of
the logistic regression model discussed in this
paper to predict mortality has been demonstrated
by its information content and R.0.C. curve. How-
ever, the model clearly has drawbacks. In
particular, overtraining was evident as model
performance decreased with the validation set of
patients and the information content of the
individual jackknife group models varied widely.
In addition, correlation among variables led to
instability in the choice of predictors for the
different jackknife groups. Nonetheless, the
models retained predictive power.

Clinical reality may not conform to the assumptions
of the logistic regression technique. For example,
variables may have multiplicative effects not
accounted for by the simple linear model. Moreover
the logit form may not approximate the true
relationship between the probability of a given
outcome and the values of a predictor. In every
case the nature of the clinical problem and the
variables involved must be carefully assessed.
Defining new variables and combining other
statistical techniques with the logistic regression
may help solve these problems.
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